Para realizar esta parte, lo primero que hice es generar numeros pseudo-aleatorios de manera teórica con octave para generar una gráfica en donde pudiera ver como varia la distriución de forma visual, en mi caso estoy utilizando la distribución de possion que utiliza la siguiente formula.
Por lo que hice esta función en octave:
En gnuplot genero esta gráfica.
Luego para generar la estadística, como sabemos debemos de generar mediante una unidad de tiempo saber cuando es mayor a uno y que esto regrese un numero aleatorio por medio de un random uniforme, por lo que generé otra función la cual da este numero.
Para luego, generar esta gráfica en gnuplot
Luego necesitamos un programa que genere y hacer "canastas" para normalizar los numeros.
Generando los siguientes resultados los cuales voy a utilizar para las pruebas.
Luego si comparamos las dos versiones de numeros pseudo-aleatorios, tenemos que una gráfica comprobando que pertenecen a la misma distribución
Pruebas estadísticas
Ahora, para verificar que lo que estoy generando, se apegan a la distribución de poisson, por lo que mediante una investigación en internet por lo que decidí hacer la prueba de chi cuadrado.
La prueba de chi cuadrado,sigue una distribución de chi cuadrada de Pearson, en donde mido la discrepancia entre una distribución observada y otra teórica, por lo que genere en una lista numeros desde la libreria de numpy con numeros de distribución de poission, comparados los numeros teóricos que generé, al igual que los numeros experimentales y para verificar que esto funciona, lo que hice fue compararlo con numeros que utilicen otra distribución, en donde tuvimos resultados satisfactorios teniendo Hipotesis contrarias.
Expongo el código.
Teniendo los siguientes resultados.
Por lo que podemos comprobar que al comparar con la distribución de poisson, tenemos un resultado satisfactorio pero al momento de comparar con una distribución normal, se rechaza.
Podemos concluir que los numeros generados si pertenecen a la distribución de poisson.
Buena la parte de la distribución. Faltó lo de aleatoriedad. Te van 4 y 4, porque ando amable.
ResponderEliminar